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Swarm Intelligence: a New C2 Paradigm with an
Application to Control of Swarms ofUAVs

Paolo Gaudiano, Benjamin Shargel, Eric Bonabeau
Icosystem Corporation

10 Fawcett St.
Cambridge, MA 02138

Bruce T. Clough
Air Force Research Laboratory

Control Sciences Division
Wright-Patterson AFB, OH

Abstract

We have developed an agent-based model to simulate command and control of a swann of
Unmanned Air Vehicles (U A V s). Our approach makes use of decentralized strategies to control
a UA V swann carrying out a search mission. In this paper we introduce our approach, we present
the details of the proposed model, and we provide results of simulations testing our control
strategies under a variety of configurations. We also outline some initial results obtained by
extending our simulation tool to include the ability to carry out missions in which UA Vs can
track moving targets, strike targets, and perform Battle Damage Assessment.

Introduction

The DoD is investigating the development of swarms of unmanned air vehicles (VA V s) to carry
out search, suppression and other missions in high-danger scenarios that could threaten the safety
of military personnel. Current techniques for controlling VA Vs, which rely on centralized
control and on the availability of global information, are not suited to the control of VA V
swarms, owing to the extreme complexity that arises from the interactions between swarm
elements. Traditional, centralized approaches frequently lead to exponential increases in
communication bandwidth requirements and in the size of the controlling software.

In contrast, swarms of simple biological or artificial organisms can exhibit rich emergent
behaviors without the need for centralized control or global communication (Bonabeau, Dorigo
and Theraulaz, 1999). Swarms of living organisms often self-organize into highly complex
systems: flocks of birds, schools of fish and swarms of insects offer clear examples of self-
organized, emergent behaviors arising from the interaction of many simple individuals. Social
insects in particular provide us with a powerful metaphor for designing collectively intelligent
systems comprised of a number of agents. These agents not only process information but also
perform actions that change their internal state, their environment, and the environment of the
other agents. Despite noise in the environment, errors in processing information and performing
tasks, and a lack of a global communication system, social insects are very efficient at
performing group-level tasks.

This paper presents initial findings of novel VA V modeling in swarm conditions and discusses
the extensibility to other sensor and C2 problems that may benefit from decentralized approaches
to military command and control in network-centric environments. In this research, VA Vs are
controlled through local rules, but attempt to achieve a common goal as a swarm. We devised
some control strategies based on strictly local information, and other strategies that involve
varying degrees of global coordination. Performance was tested systematically under a variety of
control strategies and configurations. The simulator was then extended to allow VA Vs to track
moving targets, strike targets, and perform Battle Damage Assessment (BDA).~
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Simulation of a UA V search mission

We have developed a simulation tool to study the behavior of a VA V swarm carrying out an area
search mission. A cluster of VA Vs is dropped somewhere along the perimeter of a square search
area. Several static targets are located within the search area. The VA V s disperse through the
area and try to sweep over as much of the area as possible to locate the targets. As long as the
targets are stationary and positioned randomly within the search area, the mission could be
defined equally as a target search mission or as an area coverage mission. In a later section we
describe preliminary results with an extension of this model that includes moving targets, and in
which VA Vs can strike the targets and perform BDA.

Our simulator allows simple but effective 2D and 3D visualization of VA Vs and targets. The
following is a list of the assumptions and functionality we designed into the simulator:

. The terrain is defined as a rectangular region (actually a parallelepiped in 3D), which for
convenience is subdivided into a grid of arbitrary coarseness. The grid is used primarily
to determine coverage and to track "pheromone" signals (see below) left by each VA Vas
it flies over the terrain.

.

.

Each VA V is able to fly at variable speed (within adjustable bounds), with independent
pitch and yaw control. Control dynamics are simplified by specifying a maximum turn
rate, and the ability to increase or decrease thrust.

Each VA V is equipped with various sensors:

0 One forward-looking, cone-shaped ground sensor with adjustable radius and
angular aperture, to detect terrain and possible targets. The sensor is stochastic,
with the probability of detecting a target dependent on distance, elevation, and the
amount of time spent flying over a given terrain cell.

0 One circular sensor to detect the presence of other VA V s within a prescribed
(adjustable) radius.

0 GPS-like positioning capability.

0 "Pheromone" sensor: each VA V can detect, within a small rectangular region
centered on itself, how much each terrain cell has been covered by itself or by
other VA Vs (see later description).

0 Each VA V is aware of the terrain boundaries and will turn as it approaches each
boundary to remain within the target area.

Global communication between VA Vs is possible. Our simulations test different
strategies, some of which rely on global communication and others do not.

Targets in the area-coverage version are static, randomly distributed throughout the
region (see later sections for an extended version with moving target and additional VA V
functionality and communications).

.

The simulator is written in the Java language for portability. Through a mixture of command-line
parameters, GUI widgets and built-in variables, it is possible to modify nearly every aspect of the
terrain, UA Vs and targets.
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Figure I is a screenshot of the initial version of the VA V simulator. The simulator is divided into
three areas. The top-left area includes various widgets to control certain aspects of the simulation
in real time, such as pausing and restarting, shuffling targets randomly, or modifying the
dynamics of the VA Vs. This area also displays the time elapsed, percentage of terrain covered,
and percentage of targets identified. The bottom area is a 3D view showing the boundaries of the
terrain being searched (black wireframe box), the VA Vs (blue circles), the area swept by the
VA V ground/target sensors (yellow triangles), and the targets (red/green squares). Each VA V
has a red vertical line connecting it to the ground to help visualize its position, a black line
indicating its current heading, and a yellow line indicating its "desired heading."

Figure 1: Screenshot of the UA V simulator.

Finally, the top-right area is a top-down matrix representation of the terrain, which shows the
grid used to determine coverage, the x,y position of the UA V s (black) and targets (red if not
found, green if found), and a blue trace of varying intensity that represents the "pheromone," i.e.,
the degree to which a given cell has been flown over by UA V s.

During a typical run, the user invokes the simulator with a number of run-time flags to modify
the default simulator parameters, such as: terrain size, number ofUA Vs and targets, duration of
the simulation, and several parameters related to the strategy used by the UA Vs. The simulation
can also be run without the aUI for faster execution. This is useful, for instance, when running
multiple scenarios or even the same scenarios multiple times with varying random seeds to
obtain statistically meaningful results.

Quantification of results

In order to compare different control strategies and different parameter settings it is crucial to
develop a systematic, quantitative approach. For the results that follow we ran simulations
varying key parameters over useful ranges. At each particular condition, we ran at least five
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simulations with different random seeds. Each data point in the results reported below represent
the average over the five runs.

The results reported below focused on variations in two primary factors:

. number of VA Vs (1-10, with an additional series of runs with up to 110 VA Vs);

. VA V control strategy (we tested five strategies individually and in combinations); some
strategies were tested at different parameter levels when appropriate.

Aside from these factors, we tested variations of many other parameters, such as VA V maximum
speed, size of the terrain, duration of the simulation, VA V dynamic control parameters (steering
rate, wall avoidance behavior, ...). The results presented in later sections are based on what seem
to be fairly "stable" parameters that gave meaningful results.

UA V control strategies

One key question in understanding swann control is the relative success and efficiency of
various swann (decentralized) strategies. By swann or decentralized we mean a strategy in
which each VA V independently receives some information and takes an action. In contrast, a
centralized swann control strategy might use an off-line optimization algorithm to define an
explicit path for each VA V to follow.

Within the realm of decentralized control strategies, a further distinction that must be made is
whether the VA V's decisions are based on information that is collected in the VA V's immediate
vicinity, or potentially from the entire environment (see next subsection). We have devised
several simple strategies based only on information available in the immediate surrounds of each
VA V, and some strategies that took into account information gathered from the entire search
area. We tested each strategy individually and some combinations of strategies.

The baseline strategy is a condition in which one or more VA Vs are flying in a straight
line until they reach a boundary of the search area, at which time they turn to avoid
exiting the area.

.

The random strategy is similar to the baseline, but at each time step each VA V can
change its heading by a small random angle.

.

In the repulsion strategy, each VA V can sense other VA Vs within a given radius, and it
maneuvers so as to keep other VA Vs outside of that repulsion radius.

.

. The pheromone strategy assumes that, whenever a VA V flies over a terrain cell, it leaves
a marker indicating that the cell has been visited. Other VA Vs are then able to determine,
within a small local area immediately around them, whether cells have been visited or
not. The VA V can then make small adjustments to their flight pattern to favor flying over
unexplored cells.

. In the global strategy, we assume that the search space is divided into a number of large,
square regions, and that a central controller monitors the level of coverage within each
region, as well as the number ofUA Vs currently in that region. As we will discuss later,
we tried several variants of the global strategy.

The baseline "strategy" is used as a comparison for the other strategies.
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Summary of area-coverage simulation results

For all the simulation results we used a search area of fixed size (2,000 units on each side and
1,000 units high, with a maximum VA V speed of 5 units of displacement per time unit) and we
let each simulation run for 1,000 time units. At the end of the simulation we recorded the
percentage of cells that had been visited during the simulation. A cell is considered to be visited
if it has been detected by a VA Vat least five times. The reason for requiring multiple detections
is that each VA V can detect a given cell in its sensor field several times during a single pass.

We ran simulations to test each of the five strategies described above, and every possible
combination of strategies. Here we provide a summary of the main results. More detailed results
can be found in our progress reports.

Baseline strate.ev
The results of the baseline case are shown in Figure 2. The left graph shows the percentage of the
search area covered in 1,000 time units as a function of the number of VA Vs. A single VA V
covers only about 7.5% of the search area. As expected, larger swarms cover larger fractions of
the search area, with 10 VA V s covering 44.8%. However, it is clear that the fraction of search
area covered does not scale linearly with swarm size, as shown in the plot on the right. In fact,
the larger swarms get less and less efficient in terms of coverage per VA V.

Per-UAV Efficiency of Swarm Strategies
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Figure 2: Coverage efficiency in the baseline case.

This result is not surprising, because as the number of VA Vs increases, so does the probability
that one VA V will fly over the tracks of another, which does not increase the overall coverage.
However, it is useful to consider this as a way to measure the relative efficiency of a swarm
compared to the efficiency of a single VA V.

Testing additional strate!!ies to imorove covera!!e

A simple modification of the baseline strategy is to add noise to the VA V motion (jitter), and to
add some simple repulsion when VA Vs come too close to one another. Through some systematic
tests, we found that a jitter of +/-3deg/sec generates VA V movements that are still largely
straight but with some variation that promotes a more thorough dispersion over the search space.
We also found that creating a repelling force between VA VS closer than 30 units was most
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effective. However, the improvements afforded by these modifications were not significant
except in particular conditions, such as with a small number of VA Vs or a large search area.

The jitter and repulsion factors are hardly what one would consider a control strategy.
Nonetheless, they clearly impact the efficiency of coverage. The next strategy we considered is
loosely inspired on the concept of stigmergy, which is the term to describe indirect
communication through the environment, such as the way in which ants can communicate with
other ants by leaving pheromone trails on their way to and from food sources. As mentioned
earlier, we assumed that VA Vs mark the cells they have visited with a sort of pheromone, and
that they can also detect the presence of pheromone in their vicinity.

The control strategy consists of finding uncovered cells within a small rectangular area centered
around each VA V. The uncovered cells are added up to form a vector that attracts the VA V
toward unexplored areas in its immediate vicinity.

When we combine jitter and repulsion with the pheromone strategy, the performance of the
swarm improves significantly. Figure 3 shows the quantitative results obtained with this
combination of strategies.

Per.UAV Efficiency of Swarm Strategies

I --Base

-8-PJ

2 4 6 8 10

UAVs

Figure 3: the use of a local "pheromone" strategy yields superior results.

We have found that the pheromone strategy is the crucial element to the superior performance
shown here. Figure 4 reinforces this point by showing the behavior of VA Vs during a single run.
The matrix on the left is the coverage trace of a run with 10 VA V s and a 60-unit repulsion
radius. The matrix on the right is also with 10 VA V s, but they use a local pheromone strategy
and no repulsion. Clearly, the pheromone strategy pushes VA Vs to search in a much more
elaborate pattern that leaves less unexplored space.
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Figure 4: Coverage matrices resulting from repulsion (left) and pheromone (right) strategies.

It is worth pointing out that we did not make a significant effort in trying to improve or optimize
the pheromone strategy. For instance, adding up all the cells in a rectangle as we do can lead to
occasional incorrect behavior, such as running around in tight circles when flying over a small
cluster of unexplored cells, or going straight if there are equal numbers of unexplored cells to the
left and to the right, even though the cells directly ahead might have been explored already. The
incremental improvement of using a pheromone strategy at all was much greater than changes
resulting from further modifications.

Scaling to larger UA V swarms

The simulation results described above were designed in part to test systematically the impact of
VA V swarm size on the efficiency with which the task is carried out. We limited our swarm size
to 10 so that meaningful comparisons could be made without having to change search area size,
and in order to keep computational time within reasonable bounds. In one experiment we tested
performance on the same task when the swarm size varied between 10 and 110 VA Vs. The
search area is increased to 6000x6000 units (to avoid saturation), and the VA Vs make use of the
pheromone strategy with repulsion. The results are shown in Figure 5.
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Figure 5: Coverage as a function of swarm size for larger swarms.

The left side of Figure 5 shows that total coverage continues to increase with swarm size,
although the relative efficiency decreases (note that the search area was significantly larger, so
the exact numerical values should not be compared to those in previous figures). The right side
of the figure shows one sample run with 70 VA Vs. Note that because of the size of the area, each
cell in the matrix covers several hundred units of displacement, so that a single black square may
be marking the location of multiple VA V s.

Extending the simulator to model suppression missions

In this section we summarize some preliminary results obtained with an extended simulator in
which targets move randomly over the search area, and VA V s are able to track and attack the
targets. Full details will be published in a separate manuscript.

In order to progress towards more realistic mission scenarios, the goal of the VA Vs is now not to
maximize coverage of the target area but strike mobile targets. Whereas in the area-coverage
mission the VA Vs were constantly in an exploration state, now they have a number of potential
behavioral states and arbitrary stochastic transition rules for switching between them, which can
be specified as input to the simulation. Following is a list of specific changes we made to the
model in order to carry out the new type of mission:

. VA V s are able to strike targets by diving into them. The VA V is destroyed in an attack
regardless of whether or not the strike was successful.

. VA Vs carry sensory payload that enables them to perform BDA after another VA V has
attacked a target.

. Targets are mobile, moving randomly and at a slower speed than the VA V s. Because
their movement is random, it is possible for them to escape the target area. Once a target
has been killed it no longer can move.

. To handle the uncertainty of target location, VA V pheromone, whose presence implies
the degree of coverage over a given area, now dissipates over time. Thus, an area that has
been marked as covered at one time step might not be marked in the future, reflecting the
fact that a target might have moved around during the intervening period
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. Four new VA V behavioral states have been added to the original Search state: Join,
Track, Assess Damage and Attack. The current state of a VA V detennines how it updates
its velocity vector each time step, in conjunction with "always on" wall-avoidance and
height-maintenance behaviors.

0 The Search state is the equivalent to what was used for the area-coverage mission
described earlier: the VA V aims for unexplored regions of the world, according to
local and/or global exploration gradients.

0 In the Join state, a VA V aims for the coordinates of another VA V which has
recruited it.

0 In the Track state, a VA V tries to remain above its current target at a specified

tracking height.
0 The Assess Damage state is similar to the Track state, but the VA V is also

focusing on the condition of the target to detennine whether or not another
VA V's attack has disabled it.

0 In the Attack state, a VA V plummets to the ground to destroy its current target.
The success of an attack is stochastic, and could be modified in the future to take
any relevant infonnation (such as target type and environmental conditions) into
account.

Summary of results

In this section we report our results measured in terms of cumulative Probability of Kill (PK),
that is, the percentage of targets killed during the course of a mission. Figure 6 shows how the
PK varies as a function ofUA Vs for various numbers of targets, and as a function of the number
of targets for various numbers ofUA Vs.

Cumulative PK
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Figure 6: Cumulative PK as a function of the number ofUA Vs and targets. Each data point is
averaged over 20 runs each at all three different world sizes.

These results in Figure 6 are averaged over 20 runs and three different world sizes: 1224x1224,
1500xl500 and 1732xl732 (note that these dimensions are such that the areas are in a ratio of
1.0-1.5-2.0). Starting from the left figure, we see that increasing the number ofUA Vs with a
fixed number of targets increases the overall PK. While this is not surprising, what is interesting
is the shape of each curve, and how this shape changes as a function of the number of targets.
For instance, the fact that the curve is more S-shaped for a larger number of targets suggests that
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the effectiveness of increasing the size of the swarm depends on how large the swarm already is.
This type of plot can be used to answer questions such as "how many VA Vs do I need to send to
an area in order to guarantee that 80% of targets are destroyed during a half-hour mission?" The
graph on the right of Figure 6 shows essentially the same data, but plotted as a function of the
number of targets. This type of plot answers questions such as "Given that I have a swarm of N
VA Vs, how many targets will they be able to destroy with an 80% probability within a half hour
mission?

An interesting observation is that the shape of the curves above does not seem to depend heavily
on the size of the world. This is clear in Figure 7, which plots the same data, but broken out by
world size.

PK with 8 Targets PK with 16 Targets

~ '22'
--'SJO

1732

=3 1224 --1S1O
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16 324 8 16 32 8

UAVs UAVs

Figure 7: Cumulative PK as a function of swann size, broken out by world size. (a) Results
accumulated over all target numbers (4, 8, 16); (b-d) results obtained with 4,8 16 targets only.

What appears from the results of Figure 7 is that the world size seems largely irrelevant,
especially with the largest number of targets. What this suggests is that the effectiveness of a
swann is related to the target density, and that there exists a critical target density, beyond which
the swann is likely to perform equally well. In other words, all three world sizes are such that
putting in 16 targets "saturates" the world, even at the largest size.
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Discussion

We have presented some results with an agent-based model of decentralized control strategies
for swarms ofUA Vs. This work lays the foundation for research that will be an essential
ingredient for the successful deployment ofUA V swarms. We believe that most research on
UA V swarms has been qualitative in nature. A systematic approach such as the one outlined here
will be critical in order for swarm control strategies to be adopted widely.

We have been able to show that even some fairly simple control strategies based on local
communication can yield satisfactory results on search or suppression missions. More
importantly, we have shown how one might begin to answer quantitative questions about the
functionality, scalability, and robustness ofUA V swarms.

The idea of using decentralized control strategies for UA V swarms has been described in only a
few other publications. We summarize here two examples that are somewhat closely related to
our own work.

Parunak and colleagues (Parunak, Purcell and O'Connell, 2002; Sauter, Matthews, Parunak and
Brueckner, 2002) have proposed to use digital pheromones to control UA V swarms.
Specifically, they proposed to cover a terrain with a grid of "place agents," which could be
physically implemented as ground sensors. These sensors distribute information among
themselves about threats and targets, and also interact with UA Vs, which are represented as
"walker agents".

The digital pheromones consist of signals representing threats, targets, and other characteristics.
These signals are stored by individual place agents, they can diffuse to neighboring place agents,
they can evaporate, and they are used by walker agents as a basis on which to decided where to
go at each time step. Parunak et al. demonstrate that, under certain assumptions, the diffusion
and evaporation of pheromone results in a representation akin to potential fields, a well-known
method for autonomous navigation in the presence of attractors and repulsors.

Using their digital pheromone approach, these authors test performance on a variety of missions,
with UA V swarms of up to 100 units, and with a variety of sensory and/or weapon
configurations. The results we have seen are not sufficiently detailed to allow for a careful
analysis, but at least superficially they seem promising. One surprising omission, at least in the
articles we were able to access on-line, is that the performance comparison is not normalized by
the size of the swarm. In other words, Parunak et al. compare directly the results (be they in
terms of target identification or destruction) with 10,50 and 100 UA Vs, and with various
configurations. Not surprisingly, larger swarms perform better than smaller ones.

On the positive side of the equation, Parunak et al. include details about missions that we
completely overlook in our own simulations (such as specific target, UA V, and threat types) and
they have even integrated their approach with existing platforms, such as EADTB. Other strong
points of their work are: the ability to adapt dynamically through the use of "ghost" agents; and
the ability to create paths to targets that are partially surrounded by threats - a classical problem
that gradient-based navigation schemes are unable to solve.

Nygard and colleagues have used agent-based modeling principles to control intelligent flying
munitions (Altenburg, Schlecht and Nygard, 2002). Their goal is to coordinate multiple
autonomous munitions with an approach that allows for adaptation to unexpected changes during
a mission, such as the appearance of threats.
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Altenburg et al. design a system that includes agents, the environment, and communications
mechanisms. Agents are endowed with the ability to perform several behaviors: avoidance,
attraction, following, dispersion, aggregation, homing and flocking. These behaviors are
triggered and modulated through internal and external signals.

The authors describe a Java simulation tool they developed, and some preliminary experiments
in which desirable behaviors emerge from local interactions and control rules. The cited article
shows an example in which multiple VA V s try to coordinate a strike from multiple directions. A
more recent example, presented at an ONR meeting in July of 2002, showed a more complex
missions similar to the search-and-suppress mission we are studying. In that presentation, Dr.
Nygard showed a team of VA Vs flying over a search area using a series ofwaypointsjust
outside the edge of the search area itself. By defining local rules for the VA Vs, the swarm as a
whole could carry out the mission under a variety of configurations. For instance, if one of the
VA Vs detected a high-priority target and immediately destroyed it, the other VA Vs would
automatically reconfigure their flight pattern at the next waypoints so as to ensure uniform
coverage during the rest of the mission.

While the results are interesting, we feel that this research is limited in that it does not easily
generalize to other configurations: the particular decentralized control strategy that yields the
desired swarm-level behavior was handcrafted; changing the design to accommodate different
mission parameters or constraints would require a manual modification of the decentralized
rules. This stands in contrast to our approach, in which we leverage evolutionary design and
other aspects of swarm intelligence to design local, decentralized control strategies that yield a
desirable global behavior.
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